Search results for "Semilinear equation"

showing 4 items of 4 documents

A singular elliptic equation and a related functional

2021

We study a class of Dirichlet boundary value problems whose prototype is [see formula in PDF] where 0 < p < 1 and f belongs to a suitable Lebesgue space. The main features of this problem are the presence of a singular term |u|p−2u and a datum f which possibly changes its sign. We introduce a notion of solution in this singular setting and we prove an existence result for such a solution. The motivation of our notion of solution to problem above is due to a minimization problem for a non–differentiable functional on [see formula in PDF] whose formal Euler–Lagrange equation is an equation of that type. For nonnegative solutions a uniqueness result is obtained.

0209 industrial biotechnologyPure mathematicsControl and OptimizationSemilinear equation010102 general mathematicsSingular termExistence02 engineering and technologyType (model theory)01 natural sciencesDirichlet distributionComputational MathematicsElliptic curvesymbols.namesake020901 industrial engineering & automationControl and Systems EngineeringsymbolsStandard probability spaceBoundary value problemUniquenessSingularity at u = 0Uniqueness0101 mathematicsMathematicsSign (mathematics)
researchProduct

Inverse problems for elliptic equations with power type nonlinearities

2021

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

Mathematics - Differential GeometryGLOBAL UNIQUENESSGeneral MathematicsConformal mapCALDERON PROBLEMTransversally anisotropic01 natural sciencesinversio-ongelmatMathematics - Analysis of PDEsSimple (abstract algebra)Euclidean geometryFOS: Mathematics111 MathematicsApplied mathematics0101 mathematicsMathematicsInverse boundary value problemosittaisdifferentiaaliyhtälötCalderón problemGeometrical opticsSemilinear equationApplied Mathematics010102 general mathematicstransversally anisotropicInverse problemManifold010101 applied mathematicssemilinear equationNonlinear systemDifferential Geometry (math.DG)inverse boundary value problemLinear equationAnalysis of PDEs (math.AP)Journal de Mathématiques Pures et Appliquées
researchProduct

Generalized Harnack inequality for semilinear elliptic equations

2015

Abstract This paper is concerned with semilinear equations in divergence form div ( A ( x ) D u ) = f ( u ) , where f : R → [ 0 , ∞ ) is nondecreasing. We introduce a sharp Harnack type inequality for nonnegative solutions which is a quantified version of the condition for strong maximum principle found by Vazquez and Pucci–Serrin in [30] , [24] and is closely related to the classical Keller–Osserman condition [15] , [22] for the existence of entire solutions.

Pure mathematicsHarnack inequalitynonhomogeneous equationsApplied MathematicsGeneral Mathematicsta111010102 general mathematicselliptic equations in divergence formsemilinear equationsMathematics::Analysis of PDEsType inequality01 natural sciences010101 applied mathematicsMaximum principleMathematics - Analysis of PDEsFOS: MathematicsMathematics::Differential Geometry0101 mathematicsDivergence (statistics)MathematicsHarnack's inequalityAnalysis of PDEs (math.AP)
researchProduct

Multiple solutions for strongly resonant Robin problems

2018

We consider nonlinear (driven by the p†Laplacian) and semilinear Robin problems with indefinite potential and strong resonance with respect to the principal eigenvalue. Using variational methods and critical groups, we prove four multiplicity theorems producing up to four nontrivial smooth solutions.

Regularity theoryPure mathematicsSemilinear equationStrong resonanceGeneral Mathematics010102 general mathematicsp-LaplacianMultiplicity (mathematics)Mathematics::Spectral Theory01 natural sciences010101 applied mathematicsNonlinear systemCritical groupSettore MAT/05 - Analisi Matematicap-Laplacian0101 mathematicsLaplace operatorEigenvalues and eigenvectorsCritical groupMathematics
researchProduct